

Air Force Research Laboratory

Modular Optics Needs

Presented at Mirror Technology Days 2010

Hans-Peter Dumm
AFRL Space Vehicles Directorate
7 June 2010

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Summary

- **The Problems**
 - Rapid Delivery of Capability
 - Cost
- Needs (not solution dependent)
- Possible Solution Modular Optics
 - Advantages
 - Disadvantages
 - Unanswered questions

The Problems

- Cameras take time to develop and field.
 - Operationally Responsive Space needs cameras that can be assembled rapidly to meet a variety of mission needs
- Cameras for space are expensive
- Causes
 - Number of systems acquired is small
 - Missions can be challenging
 - Alignment difficult and time consuming, especially for cooled cameras
 - Calibration
 - Non-Recurring Engineering (NRE)

Problems with NRE

Never perfect

- Often relearn old lessons each time
 - Stray light management
 - Alignment
 - Thermal stability and control
- Management and engineering disadvantages
 - Development
 - Managing requirements
 - Tracking action items
 - Design
 - Design Reviews
 - Assembly, integration, and testing
 - Verification and validation
 - Must complete this with new hardware that may fail at each step of the process

Camera Needs (the short list)

- Capable of collecting data useful to the warfighter
- Can be tested and integrated with a spacecraft in a short time (less than 6 days) by non-experts
- Withstands all transport, launch, and on-orbit environments
- Maintains optical performance throughout operational life
- Has a means to easily verify required performance like alignment and calibration
- Provides its own pointing information
- Is easy to calibrate on the ground and in orbit

Modular Optics

Potential solution and advantages

Modular optics may be one way to solve the timeline and cost problem

Advantages:

- Have the potential to reduce timelines by permitting the mating of a few common components with mission specific components to satisfy a range of missions
- Can potentially reduce costs by eliminating individual component development; an expensive and time-consuming part of the system engineering process.
- May be more likely to meet system requirement because the capabilities of the individual components are known beforehand, whereas newly designed components may not meet their target requirements.
- Could help cope with technology advancement by allowing component swaps without system redesign.

Modular Optics

Disadvantages

Disadvantages

- Only eliminate part of the systems engineering process. Refining requirements; design; design reviews; assembly, integration, and testing; and verification and validation are all still required.
- May not sell. It may be harder to sell a "good enough" system when you could have the latest technology in a tightly integrated package.
- Don't solve the quantity problem. The current market for cameras in space is still small. However, I believe this is driven by cost. If the costs were lower, quantities should go up. More imagery is always desired.
- May not be able to meet mission requirements with available components.
- May be more challenging to align.

Unanswered Questions

- What level of modularity is most useful?
 - Remains unanswered
 - Cameras are already modular

Integrators already combine focal plane arrays, optical elements, optical benches, sunshades, cryocoolers, electronics, etc. from multiple vendors.

- Is there a way to create common interfaces to allow interchangeability?
- Is interchangeability even desirable?
 - Does it merely complicate things like alignment and thermal management that are easier and cheaper to handle in a more tightly integrated system?

Prior Efforts

- Operationally Responsive Space finished a modular optics study in 2009.
 - "EO/IR Modular Architecture Trade Study"
 - Will be available in DTIC shortly:
 - Vol I (Dist C, US Government and contractors, export controlled)
 - Vol II (Dist B, US Government only)
 - Vol III (classified)
 - Corporate author: "DRS SENSORS AND TARGETING SYSTEMS INC"

Other Relevant Prior Efforts

- These recent efforts addressed the rapid calibration and checkout of cameras:
 - "Simplified, Rapid Calibration of Electro Optical Payloads"
 - Available in DTIC: ADXXXX
 - Dist C, US Government and contractors
 - Corporate author: "UTAH STATE UNIV LOGAN UT SPACE DYNAMICS LABORATORY" or "SPACE DYNAMICS LABORATORY"
 - "Rapid On-Orbit Checkout of Space Systems"
 - Available in DTIC: ADXXXX
 - Dist C, US Government and contractors
 - Corporate author: "SCIENTIFIC ADVISORY BOARD (AIR FORCE)WASHINGTON DC "

Current SBIR Topics in Pre-Solicitation

- Rapid alignment of electro-optical payloads to meet short timelines
- Lightweight mirrors
- All-sky proximity sensor technology that focuses specifically on sensing with the sun within the field of view
 - Component level technology development rather than system level

Contact information

Hans-Peter Dumm

AFRL/RVSV 3550 Aberdeen Ave SE Kirtland AFB, NM 87117

505-853-8397

hans-peter.dumm@kirtland.af.mil